Chimpanzee super strength and human skeletal muscle evolution.

نویسندگان

  • Matthew C O'Neill
  • Brian R Umberger
  • Nicholas B Holowka
  • Susan G Larson
  • Peter J Reiser
چکیده

Since at least the 1920s, it has been reported that common chimpanzees (Pan troglodytes) differ from humans in being capable of exceptional feats of "super strength," both in the wild and in captive environments. A mix of anecdotal and more controlled studies provides some support for this view; however, a critical review of available data suggests that chimpanzee mass-specific muscular performance is a more modest 1.5 times greater than humans on average. Hypotheses for the muscular basis of this performance differential have included greater isometric force-generating capabilities, faster maximum shortening velocities, and/or a difference in myosin heavy chain (MHC) isoform content in chimpanzee relative to human skeletal muscle. Here, we show that chimpanzee muscle is similar to human muscle in its single-fiber contractile properties, but exhibits a much higher fraction of MHC II isoforms. Unlike humans, chimpanzee muscle is composed of ∼67% fast-twitch fibers (MHC IIa+IId). Computer simulations of species-specific whole-muscle models indicate that maximum dynamic force and power output is 1.35 times higher in a chimpanzee muscle than a human muscle of similar size. Thus, the superior mass-specific muscular performance of chimpanzees does not stem from differences in isometric force-generating capabilities or maximum shortening velocities-as has long been suggested-but rather is due in part to differences in MHC isoform content and fiber length. We propose that the hominin lineage experienced a decline in maximum dynamic force and power output during the past 7-8 million years in response to selection for repetitive, low-cost contractile behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, an...

متن کامل

A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.

Musculoskeletal models have become important tools for studying a range of muscle-driven movements. However, most work has been in modern humans, with few applications in other species. Chimpanzees are facultative bipeds and our closest living relatives, and have provided numerous important insights into our own evolution. A chimpanzee musculoskeletal model would allow integration across a wide...

متن کامل

Comparative genomics of human stem cell factor (SCF)

Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCB...

متن کامل

Initial sequence of the chimpanzee genome and comparison with the human genome

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/dele...

متن کامل

Initial sequence of the chimpanzee genome and comparison with the human genome

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/dele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 28  شماره 

صفحات  -

تاریخ انتشار 2017